skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walden, Von"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Accurate air temperature measurements are essential in eddy covariance systems, not only for determining sensible heat flux but also for applying density effect corrections (DECs) to water vapor and CO2 fluxes. However, the influence of wind-induced vibrations of mounting structures on temperature fluctuations remains a subject of investigation. This study examines 30 min average temperature variances and fluxes using eddy covariance systems, combining Campbell Scientific sonic anemometers with closely co-located fine-wire thermocouples alongside LI-COR CO2–H2O gas analyzers at multiple heights above a sagebrush ecosystem. The variances of sonic temperature after humidity corrections (Ts) and sensible heat fluxes derived from Ts are underestimated (e.g., by approximately 5 % for temperature variances and 4 % for sensible heat fluxes at 40.2 m, respectively) as compared with those measured by a fine-wire thermocouple (Tc). Spectral analysis illustrates that these underestimated variances and fluxes are caused by the lower energy levels in the Ts spectra than the Tc spectra in the low-frequency range (natural frequency < 0.02 Hz). These underestimated Ts spectra in the low-frequency range become more pronounced with increasing wind speeds, especially when wind speed exceeds 10 m s−1. Moreover, the underestimated temperature variances and fluxes cause overestimated water vapor and CO2 fluxes through DEC. Our analysis suggests that these underestimations when using Ts are likely due to wind-induced vibrations affecting the tower and mounting arms, altering the time of flight of ultrasonic signals along three sonic measurement paths. This study underscores the importance of further investigations to develop corrections for these errors. 
    more » « less
  2. Abstract. Accurate boundary layer temperature and humidity profiles are crucial for successful forecasting of fog, and accurate retrievals of liquid water path are important for understanding the climatological significance of fog. Passive ground-based remote sensing systems such as microwave radiometers (MWRs) and infrared spectrometers like the Atmospheric Emitted Radiance Interferometer (AERI), which measures spectrally resolved infrared radiation (3.3 to 19.2 µm), can retrieve both thermodynamic profiles and liquid water path. Both instruments are capable of long-term unattended operation and have the potential to support operational forecasting. Here we compare physical retrievals of boundary layer thermodynamic profiles and liquid water path during 12 cases of thin (LWP<40 g m−2) supercooled radiation fog from an MWR and an AERI collocated in central Greenland. We compare both sets of retrievals to in-situ measurements from radiosondes and surface-based temperature and humidity sensors. The retrievals based on AERI observations accurately capture shallow surface-based temperature inversions (0–10 m a.g.l.) with lapse rates of up to −1.2 ∘C m−1, whereas the strength of the surface-based temperature inversions retrieved from MWR observations alone are uncorrelated with in-situ measurements, highlighting the importance of constraining MWR thermodynamic profile retrievals with accurate surface meteorological data. The retrievals based on AERI observations detect fog onset (defined by a threshold in liquid water path) earlier than those based on MWR observations by 25 to 185 min. We propose that, due to the high sensitivity of the AERI instrument to near-surface temperature and small changes in liquid water path, the AERI (or an equivalent infrared spectrometer) could be a useful instrument for improving fog monitoring and nowcasting, particularly for cases of thin radiation fog under otherwise clear skies, which can have important radiative impacts at the surface. 
    more » « less
  3. Abstract. Stratospheric circulation is a critical part of the Arctic ozone cycle.Sudden stratospheric warming events (SSWs) manifest the strongest alterationof stratospheric dynamics. During SSWs, changes in planetary wavepropagation vigorously influence zonal mean zonal wind, temperature, andtracer concentrations in the stratosphere over the high latitudes. In thisstudy, we examine six persistent major SSWs from 2004 to 2020 using theModern-Era Retrospective analysis for Research and Applications, Version 2(MERRA-2). Using the unique density of observations around the Greenlandsector at high latitudes, we perform comprehensive comparisons of high-latitude observations with the MERRA-2 ozone dataset during the six majorSSWs. Our results show that MERRA-2 captures the high variability of mid-stratospheric ozone fluctuations during SSWs over high latitudes. However,larger uncertainties are observed in the lower stratosphere and troposphere.The zonally averaged stratospheric ozone shows a dramatic increase of9 %–29 % in total column ozone (TCO) near the time of each SSW, which lastsup to 2 months. This study shows that the average shape of the Arcticpolar vortex before SSWs influences the geographical extent, timing, andmagnitude of ozone changes. The SSWs exhibit a more significant impact onozone over high northern latitudes when the average polar vortex is mostlyelongated as seen in 2009 and 2018 compared to the events in which the polarvortex is displaced towards Europe. Strong correlation (R2=90  %) isobserved between the magnitude of change in average equivalent potentialvorticity before and after SSWs and the associated averaged total columnozone changes over high latitudes. This paper investigates the differentterms of the ozone continuity equation using MERRA-2 circulation, whichemphasizes the key role of vertical advection in mid-stratospheric ozoneduring the SSWs and the magnified vertical advection in elongated vortexshape as seen in 2009 and 2018. 
    more » « less
  4. Abstract. This study presents the first full annual cycle (2019–2020) of ambient surface aerosol particle number concentration measurements (condensationnuclei > 20 nm, N20) collected at Summit Station (Summit), in the centre of the Greenland Ice Sheet (72.58∘ N, −38.45∘ E; 3250 ma.s.l.). The mean surface concentration in 2019 was 129 cm−3, with the 6 h mean ranging between 1 and 1441 cm−3. The highest monthly mean concentrations occurred during the late spring and summer, with the minimum concentrations occurring in February (mean: 18 cm−3). High-N20 events are linked to anomalous anticyclonic circulation over Greenland and the descent of free-tropospheric aerosol down to the surface, whereas low-N20 events are linked to anomalous cyclonic circulation over south-east Greenland that drives upslope flow and enhances precipitation en route to Summit. Fog strongly affects particle number concentrations, on average reducing N20 by 20 % during the first 3 h of fog formation. Extremely-low-N20 events (< 10 cm−3) occur in all seasons, and we suggest that fog, and potentially cloud formation, can be limited by low aerosol particle concentrations over central Greenland. 
    more » « less
  5. Abstract. Improvements to climate model results in polar regions require improvedknowledge of cloud properties. Surface-based infrared (IR) radiancespectrometers have been used to retrieve cloud properties in polar regions,but measurements are sparse. Reductions in cost and power requirements toallow more widespread measurements could be aided by reducing instrumentresolution. Here we explore the effects of errors and instrument resolutionon cloud property retrievals from downwelling IR radiances for resolutionsof 0.1 to 20 cm−1. Retrievals are tested on 336 radiance simulationscharacteristic of the Arctic, including mixed-phase, verticallyinhomogeneous, and liquid-topped clouds and a variety of ice habits.Retrieval accuracy is found to be unaffected by resolution from 0.1 to 4 cm−1, after which it decreases slightly. When cloud heights areretrieved, errors in retrieved cloud optical depth (COD) and ice fractionare considerably smaller for clouds with bases below 2 km than for higherclouds. For example, at a resolution of 4 cm−1, with errors imposed(noise and radiation bias of 0.2 mW/(m2 sr cm−1) and biases intemperature of 0.2 K and in water vapor of −3 %), using retrieved cloudheights, root-mean-square errors decrease from 1.1 to 0.15 for COD, 0.3 to0.18 for ice fraction (fice), and 10 to 7 µm for iceeffective radius (errors remain at 2 µm for liquid effective radius).These results indicate that a moderately low-resolution, surface-based IRspectrometer could provide cloud property retrievals with accuracycomparable to existing higher-resolution instruments and that such aninstrument would be particularly useful for low-level clouds. 
    more » « less
  6. Abstract. Radiation fogs at Summit Station, Greenland (72.58&thinsp;N,38.48&thinsp;W; 3210&thinsp;m&thinsp;a.s.l.), are frequently reported by observers. Thefogs are often accompanied by fogbows, indicating the particles are composedof liquid; and because of the low temperatures at Summit, this liquid issupercooled. Here we analyze the formation of these fogs as well as theirphysical and radiative properties. In situ observations of particle size anddroplet number concentration were made using scattering spectrometers near 2 and 10&thinsp;m height from 2012 to 2014. These data are complemented bycolocated observations of meteorology, turbulent and radiative fluxes, andremote sensing. We find that liquid fogs occur in all seasons with thehighest frequency in September and a minimum in April. Due to thecharacteristics of the boundary-layer meteorology, the fogs are elevated,forming between 2 and 10&thinsp;m, and the particles then fall toward the surface.The diameter of mature particles is typically 20–25&thinsp;µm in summer.Number concentrations are higher at warmer temperatures and, thus, higher insummer compared to winter. The fogs form at temperatures as warm as −5&thinsp;C, while the coldest form at temperatures approaching −40&thinsp;C. Facilitated by the elevated condensation, in winter two-thirds offogs occurred within a relatively warm layer above the surface when thenear-surface air was below −40&thinsp;C, as cold as −57&thinsp;C,which is too cold to support liquid water. This implies that fog particlessettling through this layer of cold air freeze in the air column beforecontacting the surface, thereby accumulating at the surface as ice withoutriming. Liquid fogs observed under otherwise clear skies annually imparted1.5&thinsp;W&thinsp;m−2 of cloud radiative forcing (CRF). While this is a smallcontribution to the surface radiation climatology, individual events areinfluential. The mean CRF during liquid fog events was 26&thinsp;W&thinsp;m−2, andwas sometimes much higher. An extreme case study was observed toradiatively force 5&thinsp;C of surface warming during the coldest partof the day, effectively damping the diurnal cycle. At lower elevations ofthe ice sheet where melting is more common, such damping could signal a rolefor fogs in preconditioning the surface for melting later in the day. 
    more » « less
  7. Abstract Clouds have a large effect on the radiation budget and represent a major source of uncertainty in climate models. Supercooled liquid clouds can exist at temperatures as low as 235 K, and the radiative effect of these clouds depends on the complex refractive index (CRI) of liquid water. Laboratory measurements have demonstrated that the liquid‐water CRI is temperature‐dependent, but corroboration with field measurements is difficult. Here we present measurements of the downwelling infrared radiance and in‐situ measurements of supercooled liquid water in a cloud at temperatures as low as 240 K, made at South Pole Station in 2001. These results demonstrate that including the temperature dependence of the liquid‐water CRI is essential for accurate calculations of radiative transfer through supercooled liquid clouds. Furthermore, we show that when cloud properties are retrieved from infrared radiances (using the spectral range 500–1,200 cm−1) spurious ice may be retrieved if the 300 K CRI is used for cold liquid clouds (∼240 K). These results have implications for radiative transfer in climate models as well as for retrievals of cloud properties from infrared radiance spectra. 
    more » « less
  8. Abstract Supercooled fogs can have an important radiative impact at the surface of the Greenland Ice Sheet, but they are difficult to detect and our understanding of the factors that control their lifetime and radiative properties is limited by a lack of observations. This study demonstrates that spectrally resolved measurements of downwelling longwave radiation can be used to generate retrievals of fog microphysical properties (phase and particle effective radius) when the fog visible optical depth is greater than ∼0.25. For 12 cases of fog under otherwise clear skies between June and September 2019 at Summit Station in central Greenland, nine cases were mixed‐phase. The mean ice particle (optically‐equivalent sphere) effective radius was 24.0 ± 7.8 µm, and the mean liquid droplet effective radius was 14.0 ± 2.7 µm. These results, combined with measurements of aerosol particle number concentrations, provide evidence supporting the hypotheses that (a) low surface aerosol particle number concentrations can limit fog liquid water path, (b) fog can act to increase near‐surface aerosol particle number concentrations through enhanced mixing, and (c) multiple fog events in quiescent periods gradually deplete near‐surface aerosol particle number concentrations. 
    more » « less
  9. Abstract. Polar regions are characterized by their remoteness, making measurements challenging, but an improved knowledge of clouds and radiation is necessary to understand polar climate change. Infrared radiance spectrometers can operate continuously from the surface and have low power requirements relative to active sensors. Here we explore the feasibility of retrieving cloud height with an infrared spectrometer that would be designed for use in remote polar locations. Using a wide variety of simulated spectra of mixed-phase polar clouds at varying instrument resolutions, retrieval accuracy is explored using the CO2 slicing/sorting and the minimum local emissivity variance (MLEV) methods. In the absence of imposed errors and for clouds with optical depths greater than  ∼ 0.3, cloud-height retrievals from simulated spectra using CO2 slicing/sorting and MLEV are found to have roughly equivalent high accuracies: at an instrument resolution of 0.5cm−1, mean biases are found to be  ∼ 0.2km for clouds with bases below 2 and −0.2km for higher clouds. Accuracy is found to decrease with coarsening resolution and become worse overall for MLEV than for CO2 slicing/sorting; however, the two methods have differing sensitivity to different sources of error, suggesting an approach that combines them. For expected errors in the atmospheric state as well as both instrument noise and bias of 0.2mW/(m2srcm−1), at a resolution of 4cm−1, average retrieval errors are found to be less than  ∼ 0.5km for cloud bases within 1km of the surface, increasing to  ∼ 1.5km at 4km. This sensitivity indicates that a portable, surface-based infrared radiance spectrometer could provide an important complement in remote locations to satellite-based measurements, for which retrievals of low-level cloud are challenging. 
    more » « less